
Page 1

OCI Installation

Page 2

Table of Content

1. Create Cluster..3
2. Service Account ..4
3. Create S3 Storage..6
4. Kube Node Installation, configuration, and run ..7
5. Cloud Node ...9

5.1 Root...10
5.2 Pod ..13

6. Solution component...16
7. Cloud Installation ..18

Page 3

1. Create Cluster
1. Create a new cluster in the Kubernetes Clusters (OKE).

2. Wait until the cluster is in a Active state.

3. Install kubectl(command line utility) on your machine and create namespace in you cluster for your client where hie
is a name of namespace.

kubectl create ns hie

4. Install helm(command line utility) on your machine and install HA proxy to you cluster. HA proxy provides load
balancing and mapping of the contextpath to HIE-Engine services.

helm repo add haproxy-ingress https://haproxy-ingress.github.io/charts

helm install haproxy-ingress haproxy-ingress/haproxy-ingress \

-n haproxy-ingress \

--create-namespace \

--set rbac.create=true \

--set controller.ingressClass=haproxy \

--set controller.ingressClassResource.enabled=true \

--set controller.stats.enabled=true \

--set controller.kind=DaemonSet \

--set controller.daemonset.useHostPort=true

kubectl --namespace haproxy-ingress get services haproxy-ingress -o wide

Page 4

2. Service Account
Create Service Account to access the OCI cluster.

1. Create kubenode-sa service account within the hie namespace.

kubectl -n hie create serviceaccount kubenode-sa

kubectl -n hie create rolebinding kubenode-sa-admin-rb --clusterrole=cluster-admin --serviceaccount=hie:kubenode-sa

2. Create secret.yaml file to access the OCI cluster.

tee secret.yaml > /dev/null <<EOT

apiVersion: v1

kind: Secret

metadata:

 name: kubenode-sa-token

 annotations:

 kubernetes.io/service-account.name: kubenode-sa

type: kubernetes.io/service-account-token

EOT

3. Apply secret.yaml file to access the OCI cluster.

kubectl -n hie apply -f secret.yaml

4. Display content of the secret.yaml file.

kubectl -n hie describe secrets kubenode-sa-token

The following is the example of described secret.yaml file.

Name: kubenode-sa-token

Namespace: hie

Labels: <none>

Annotations: kubernetes.io/service-account.name: kubenode-sa

 kubernetes.io/service-account.uid: 7ef46ac7...

Type: kubernetes.io/service-account-token

Data

Page 5

====

ca.crt: 1285 bytes

namespace: 3 bytes

token: eyJhbGciOiJSUzI1NiIsImtpZCI6ImFGQ1J4aF9xRnhFNnZ...

Where value of the token should be used in the token attribute of the kubernetes element within the Kube Node
config.xml configuration file.

5. Optional step to set token to the $TOKEN local system variable.

TOKEN=`kubectl -n hie get secret kubenode-sa-token -o jsonpath='{.data.token}' | base64 --decode`

echo $TOKEN

6. Optional step to set access to the OCI cluster for kubectl using token.

kubectl config set-credentials kubenode-sa --token="<token>"

kubectl config set-cluster oci --server=144.24.177.92:6443 # --insecure-skip-tls-verify

kubectl config set-context oci --cluster=oci --user=kubenode-sa

kubectl config use-context oci

Page 6

3. Create S3 Storage
1. Go to Object Storage and Archive Storage/Buckets in OCI cloud and create new one with name of your client.

2. Go to profile/My profile and click on Customer secret keys > Generate Secret Key, the string which is
generated copy immediately - this is your secretKey. In line which is created is Access key and this is your
accessKey.

3. Configure following part of config for Kube Node with correct region As a aesSecret password you can choose
anything you want. It is used just for cypher/decipher entities in s3.

<s3storage url="https://frzcfiay9tsa.compat.objectstorage.eu-frankfurt-1.oraclecloud.com"

 accessKey="your_access_key"

 secretKey="your_secret_key"

 region="eu-frankfurt-1"

 aesSecret="some_possword"/>

4. In root element of the config.xml for Kube Node configure client name same as the name of the bucket.

<config clientId="exampleclient" ...

Page 7

4. Kube Node Installation, configuration, and run
1. Download Kube Node Linux installation from the Configurator Studio from the following path.

<Hub>/Releases/install/kubenode.tar.gz

2. Copy and unpack downloaded folder to target system.
3. Configure config.xml configuration file based on the following example.

<config clientId="engineId">

 <upgrade

 nodeRoot="./node/temp/upgrade"/>

 <server

 port="8023"

 keystore="keystore.jks"

 ksPass="password"

 crPass="password"

 useTLS="false"

 />

 <access

 user="accessUser"

 password="accessPassword"

 />

 <storage

 root="data"

 />

 <kubernetes

 url="https://kubernetes.example.com:6443/"

 token="eyJhbGciOiJSUzI1NiIsImtpZCI6ImFGQ1J4aF9xRnhFNnZ..."

 namespace="hie"

 debug="false"

 />

 <dockerRegistry

 url=""

 user="dockerRegistryUser"

 password="dockerRegistryPassword"

 />

 <s3storage

 url="http://s3.example.com:8090/"

 accessKey=""

 secretKey=""

 region="US_EAST_1"

 aesSecret="aesSecret"

 />

 <console root="data" />

</config>

Page 8

• Note, that Kube Node can be installed in the Cloud, but cannot be installed in Kubernetes.
• dockerregistry serves as storage for images of releases.
• s3storage serves as storage for deployments configurations and configuration dirs. sluzi na ulozenie

konfiguracie deploymentov a dirs

4. To start the Kube Node enter ./kubenode.sh start. To stop the Kube Node enter ./kubenode.sh stop.

Page 9

5. Cloud Node
There is a new Cloud Node component of the Configurator Studio where you can create and configure Cloud Node with
the similar purpose as the Node component.

Cloud Node consists of Root and Settings components and you can also create a Generic Snippets there.

Settings component allows you to configure connection to the system where the Kube Node is installed.

Page 10

5.1 Root

A new Root element that contains following sub-components.

• Overview where you can check the status of running HIE-Engines, access the Console of an individual systems
(pods) and Start, Stop, or Restart all systems (pods).

Following is the example when all systems were restarted.

When all systems are stopped from the Overview, the value in the replica attribute is set to 0 on all systems. When
all systems are started from the Overview, the value in the replica attribute is set back to original value on all
systems. Both previously described actions are performed when all systems are restarted from the Overview.
Currently, the restart is not the rolling restart.

• Console of the Kube Node.

Page 11

• Events from kubernetes displaying general activities on HIE-engine systems (pods).

Page 12

• Pods where you can access individual pods (HIE-engine systems) and where you can access Console, File System,
or Terminal of each individual pod.

• Other Entities

Page 13

5.2 Pod
Each pod contains following components

Page 14

Where File System allows you to access the file system of each pod (HIE-Engine).

And Terminal allows you to issue basic commands against the operating system. For example ls, cat <filename>.

Page 15

Page 16

6. Solution component
There is a new Solution component of the Configurator Studio where you can configure whole Cloud Solution.

It consists of the following components.

• Cloud Installation you can install the solution to Kube Node from. It contains automatically generated
kubernetes.yaml configuration file.

• solution.xml configuration file where you can configure the ingress and deployments elements. Ingress exposes
HTTP and HTTPS routes from outside the cluster to services within the cluster and provides load balancing.
The domain element needs to be configured with the name instead of IP address.

The id attribute of the deployment element contains the name of a real deployment where currently
logger/main/node/tunnel deployments are supported.

The replicas specifies number of systems that will be started with a given deployment scaling the service and
providing High Availability of the service.

Note, the meaning of the replicas element in the node element is number of nodes providing the service (population is
distributed on) you need to configure nodeInHa="yes" to run two replicas for the same MPI node. Also note, there is no
need to specify configuration related to Other Masters as Configurator Studio does it for you. Additionally, all
systems are automatically connected to the Central Logger represented by logger deployment.

You can also configure cpu and memory but it is not recommended to specify them ad in case you need to scale the
system configure it using number of replicas.

<root>

 <ingress>

 <!-- only for TLS on ingress -->

 <domain>echo.hie01.k8s01.dev.ententee.com</domain>

 <certificate>

 MIIDXzCCAk...

 </certificate>

 <key>

 MIIEuwIBADANB...

 </key>

 <paths>

 <path uri="/main" engineId="main" port="7211"/>

 <path uri="/central" engineId="logger" port="7211"/>

 </paths>

 </ingress>

 <deployments>

 <deployment id="logger"

 cpu="0.3"

 memory="2"/>

 <deployment id="node"

Page 17

 cpu="0.3"

 replicas="2"

 memory="2"/>

 <deployment id="main"

 replicas="2"

 cpu="0.3"

 memory="2"/>

 </deployments>

</root>

• Deployments, generic snippets, and directories used in the solution.

Page 18

7. Cloud Installation
To install the solution select Cloud Installation on first pane, enter the Root element on second pane, and click the Install
to Cloud button.

Then two installation possibilities are available.

• Update where only systems that needs to be updated are updated. In this case the NO DOWNTIME strategy will
be used and services will always be available as replicas are updated one by one. Load balancer redirects requests to
other replicas and a given one is updated and restarted.
Additionally, when one of the replicas ius stopped, a new one is automatically started.

Note, the systems are restarted one by one, and it might happen, that for a limited short period a new updated MPI
Master can communicate with an old not-updated MPI Node.

• Reinstall where all systems are stopped, updated and started.

